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Welcome to the International Wigner Workshop (IWW) 2023, being held on June 11-12, 2023 
at the Casa Convalèscencia, Barcelona, Spain and is hosted by the International Workshop on 
Computational Nanotechnology (IWCN) 2023. The workshop continues to bring together 
researchers from all areas of science and engineering areas in which Wigner functions have 
been or could be applied.  

IWW 2023 marks the fifth instalment of the International Wigner Workshop series (see 
www.iww-meeting.info for the full history) and further fosters the growing Wigner Initiative 
community (www.iue.tuwien.ac.at/wigner-wiki/). The speakers at this year’s workshop 
provided an abstract which was reviewed by the program committee. Topics of interest 
related to the use of Wigner functions are (but not limited to): Computational or Numerical 
Challenges, Nanoelectronics, Nanostructures, Quantum Circuits, Quantum Information 
Processing, Quantum Optics, Quantum Physics, and Quantum Transport.  

IWW 2023 hosts five invited and 16 regular speakers, with a total of 31 registered participants.  

We would like to express our gratitude to Xavier Oriols (General Chair of IWCN 2023) for 
supporting our satellite event as well as the participants of IWW 2023 who will make the 
workshop both interesting and successful. We hope that you enjoy it. 

Stefano Olivares and Josef Weinbub 
Chairs of IWW 2023 

June, 2023 
 
General Chair 
Stefano Olivares, University of Milan, Italy 
 
Co-Chair 
Josef Weinbub, TU Wien, Austria 
 
 
Program Committee 
Wolfgang Belzig, University of Konstanz, Germany 
David K. Ferry, Arizona State University, USA 
Irena Knezevic, University of Wisconsin-Madison, USA 
Mihail Nedjalkov, TU Wien, Austria and Bulgarian Academy of Sciences, Bulgaria 
Franco Nori, RIKEN, Japan 
Xavier Oriols, Autonomous University of Barcelona, Spain 
Siegfried Selberherr, TU Wien, Austria 
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Program 

 

Sunday, June 11 

 

8:30  Registration opens in main entrance of “Casa Convalescencia” 

 

Workshop room: Aula 11-13, on the first floor 

 

9:00  Opening Remarks 

   Stefano Olivares and Josef Weinbub 

 

9:10  Optics and Electrodynamics 

   Chair: Irena Knezevic 

 

 9:10  Invited: "The Wigner formalism in high-energy electrodynamics,"  

   Christian Kohlfürst, Helmholtz-Zentrum Dresden Rossendorf e.V.    1 

 

 9:50  "Gauge-invariant Wigner particle model for linear electromagnetic fields,"  

   Mauro Ballicchia, Mihail Nedjalkov, and Josef Weinbub, TU Wien  3 

 

 10:10  "Full counting statistics of ultrafast quantum transport," Matthias Hübler and 
Wolfgang Belzig, Universität Konstanz      6 

 

 10:30  "Mitigating phase diffusion through a realistic optical parametric oscillator," Stefano 
Olivares, Università degli Studi di Milano and Istituto Nazionale di Fisica Nucleare 
       8 

       

10:50  Coffee 
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 11:10  Invited: "Wigner approach to optimal control in quantum and classical wave 
propagation," Omar Morandi, University of Florence    10 

 

 11:50  "Functional calculus in phase-space with applications to quantum fluid dynamics," 
Luigi Barletti, Università degli Studi di Firenze     11 

 

12:10   Tunneling 

   Chair: Mihail Nedjalkov 

 

 12:10  "Electrothermal signed particle Monte Carlo simulation of a resonant tunneling 
diode," Orazio Muscato, Università di Catania     12 

 

 12:30  "Interaction time of Schrödinger cat state with amplitude-varying Gaussian potential," 
Darius Woźniak, Maciej Kalka, Marta Wleklińska, Damian Kołaczek, Maciej Wołoszyn, 
and Bartlomiej J. Spisak, AGH University of Science and Technology and University of 
Agriculture in Kraków       13 

 

12:50 Lunch 

15:00  Condensed Matter and Transport  1  

   Chair: Stefano Olivares 

 15:00  Invited: "Scaling laws of the thermal conductivity of solids: the role of topological, 
geometrical, and compositional disorder," Michele Simoncelli, University of 
Cambridge       15 

 

 15:40  "Scattering in the Wigner equation," Samuel W. Belling and Irena Knezevic, University 
of Wisconsin – Madison        17 

 

 16:00  "Real-space treatment of polar-optical phonons with Wigner functions," David K. 
Ferry, Arizona State University       19 

 

16:20  Coffee 
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 16:40  Invited: "Minimum uncertainty states with Wigner: quantum hydro-
thermodynamics," Nezihe Uzun, Polish Academy of Sciences   21 

 

 17:20  "Overcoming the numerical sign problem in the Wigner dynamics via adaptive particle 
annihilation," Yunfeng Xiong, Beijing Normal University    22 

 

 17:40  "Towards the intuitive understanding of the quantum world: Sonification of Wigner 
function," Reiko Yamada, Eloy Pinol Jimenez, and Maciej Lewenstein, ICFO – The 
Institute of Photonic Sciences and ICREA      24 

 

20:00   Reception at restaurant “Ca la Nuria” (close to “Plaça Catalunya”) 

 

 

Monday, June 12 

 

9:00  Condensed Matter and Transport  2 

   Chair: David K. Ferry 

 

 9:00  "Investigation of a staggered grid formulation of the Wigner transport equation for 
complex band structures," Mathias Pech, Alan Abdi, and Dirk Schulz, TU Dortmund 

          26 

 9:20  "Operational phase-space distribution functions through consecutive weak and 
strong measurements," Xavier Oriols and Carlos F. Destefani, Universitat Autònoma 
de Barcelona       28 

 

9:40 Coffee 
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10:20   Wigner Quantum Systems 

   Chair: Josef Weinbub 

 

 10:20  Invited: "Dynamics-based certification of quantumness," Lin Htoo Zaw, Pooja 
Jayachandran, Clive Cenxin Aw, and Valerio Scarani, National University of Singapore 
       30 

 

 11:00  "Phase-space representation of time-frequency as quantum continuous variables: 
universal quantum computing, metrology, and the quantum-classical frontier," Pérola 
Milman, Eloi Descamps, Nicolas Fabre, and Arne Keller, Université Paris Cité, CNRS, 
Télecom ParisTech,  and Université Paris-Saclay     32 

 

 11:20  "Tunneling process of symmetrical state – phase-space approach based on the time 
evolution of the Wigner distribution function," Maciej Kalka, Dariusz Woźniak, Marta 
Wleklińska, Damian Kołaczek, Maciej Wołoszyn, and Bartlomiej J. Spisak, AGH 
University of Science and Technology, University of Agriculture in Kraków 34 

 

 11:40  "Correlation functions in Calogero Sutherland Model," Grigory E. Astrakharchik, 
Andrea Colcelli, and Andrea Trombettoni, Universitat Politècnica de Catalunya, 
Universitat de Barcelona, and Dipartimento di Fisica - Strada Costiera  36 

 

 

12:00 Closing Remarks 

 

12:15 Lunch & Coffee 
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The Wigner Formalism in High-Energy Quantum Electrodynamics 
Christian Kohlfürst 

Helmholtz-Zentrum Dresden Rossendorf e.V., Bautzner Landstraße 400,  

D-01328 Dresden, Germany 

c.kohlfuerst@hzdr.de 

We give an overview of the Heisenberg-Wigner phase-space formalism in the context of quantum field theory, 

in particular strong-field quantum electrodynamics. We discuss the fundamental differences between the 

Wigner formalism in field theory as compared to the quantum mechanical variant. Most importantly, there is 

no conservation of the number of particles, thus allowing us to study, for example, electron-positron pair 

production. In this context, we also show how this high-energy variant of the formalism can be related to low-

energy notions, such as the Vlasov equation. Finally, we present some recent developments in the field, both 

analytically and structurally, as well as numerically. 

  

[1] M. Diez, R. Alkofer, C. Kohlfürst, arXiv:2211.07510 [hep-ph] 

[2] C. Kohlfürst, N. Ahmadiniaz, J. Oertel, R. Schützhold, Phys. Rev. Lett. 129, 241801 (2022) 

[3] I.A. Aleksandrov, C. Kohlfürst, Phys. Rev. D 101, 096009 (2020) 

[4] C. Kohlfürst, Phys. Rev. D 101, 096003 (2020) 

[5] C. Kohlfürst, Phys. Rev. D 99, 096017 (2019) 
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Fig.1: Plot of the mean number of created particles as a function of 
ω for the profile Ecrt/6 exp(-ω2t2). The orange circles denote the 
results of the Dirac-Heisenberg-Wigner formalism in comparison to 
simple approximations. 

Fig.3: Momentum spectrum of electrons and positrons produced in 
vacuum by a standing wave pattern. Due to high-frequency modes 
of the background field photon-photon scattering leads to electron-
positron pair production (Breit-Wheeler effect). 

 

 

 

 

 

 

 

 

 

 

 

Fig.2: Momentum spectrum of electrons and positrons produced in 
vacuum by a strong, slowly varying electromagnetic field (Schwinger 
effect). The electric field accelerates particles in polarization 
direction, the magnetic field deflects them in perpendicular 
direction. The Stern-Gerlach force separates spin-up from spin-down 
fermions. 
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Gauge-Invariant Wigner Particle Model for Linear Electromagnetic Fields 
M. Ballicchia, M. Nedjalkov, and J. Weinbub 

Institute for Microelectronics, TU Wien 

ballicchia@iue.tuwien.ac.at 

Available quantum transport equations accounting 
for electromagnetic (EM) fields and formulated in 
terms of EM potentials depend on the choice of the 
gauge [1], [2], [3], [4]. Consequently, this requires 
gauge-specific solution approaches which limit 
physical intuition as potentials are pure 
mathematical quantities. We have previously 
suggested a Wigner equation which is formulated in 
terms of phase space, a quasi-distribution function, 
and EM forces. The equation offers a basis for 
developing a physically intuitive picture of a general 
EM fields aware quantum evolution [5]. Simplifying 
assumptions about the linearity of the EM fields 
allow to reduce the complexity of the equation [6] in 
favor of deeper physical insights. In this work, we 
associate a picture of quantum particles governed 
by the Lorentz force to the equation and discuss 
some of their properties. The physical setup 
corresponds to a 2D transport problem in the 𝒙𝒙 =
 (𝑥𝑥,𝑦𝑦) plane and electromagnetic fields with linear 
spatial dependence: The magnetic field 𝑩𝑩 =
 (0, 0,𝐵𝐵(𝑦𝑦)) is normal to the plane and linear along 
𝑦𝑦: 𝐵𝐵(𝑦𝑦)  =  𝐵𝐵0  + 𝐵𝐵1𝑦𝑦. The in-plane electric field 
𝑬𝑬(𝒙𝒙) which is also assumed linear is defined as 
𝑬𝑬(𝑥𝑥,𝑦𝑦)  =  (𝐸𝐸𝑥𝑥𝑥𝑥,𝐸𝐸𝑦𝑦𝑦𝑦). Under these assumptions 
and in the case of infinite coherence length the 
Wigner equation takes a very informative form 

�
𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝑷𝑷
𝑚𝑚
⋅
𝜕𝜕
𝜕𝜕𝒙𝒙

+ 𝑭𝑭(𝑷𝑷,𝒙𝒙) ⋅
𝜕𝜕
𝜕𝜕𝑷𝑷
�𝑓𝑓𝑤𝑤(𝑷𝑷,𝒙𝒙) = 

        𝐵𝐵1ℏ
2

𝑚𝑚
𝑒𝑒
12
� 𝜕𝜕2

𝜕𝜕𝑃𝑃𝑦𝑦2
𝜕𝜕
𝜕𝜕𝑥𝑥
− 𝜕𝜕

𝜕𝜕𝑃𝑃𝑥𝑥

𝜕𝜕
𝜕𝜕𝑃𝑃𝑦𝑦

𝜕𝜕
𝜕𝜕𝑦𝑦
� 𝑓𝑓𝑤𝑤(𝑷𝑷,𝒙𝒙),             (1) 

where 𝑭𝑭(𝑷𝑷,𝒙𝒙) = 𝑒𝑒 �𝑬𝑬(𝒙𝒙) + 𝑷𝑷×𝐵𝐵(𝑦𝑦)
𝑚𝑚

� is the Lorentz 

force and 𝑷𝑷 is the kinetic momentum.  The left-hand 
side of (1) represents the Liouville operator, which 
determines the classical electron evolution as in the 
Boltzmann equation.     

However, on the right-hand side the collision 
operator acting on the distribution function is now 
replaced by an operator depending on the linear 
coefficient of the magnetic field 𝐵𝐵1. If the latter 
becomes zero the equation consistently describes 
particle evolution over Newtonian trajectories. The 
right-hand side of the equation is thus responsible 
for all quantum effects. This analogy suggests to 
develop a particle model for the equation, which will 
further describe quantum effects in classical terms. 
Stochastic  article models for the Boltzmann and the 
common Wigner equation (formulated in terms of 
the Wigner potential) are formally derived from the 
Fredholm integral expressions of the corresponding 
equations [7] which are of the form: 

            𝑓𝑓(𝑄𝑄) = ∫𝐾𝐾(𝑄𝑄,𝑄𝑄′)𝑓𝑓(𝑄𝑄′)𝑑𝑑𝑄𝑄′ + 𝑓𝑓0(𝑄𝑄)           (2) 

However, the right-hand side of (1) contains higher-
order derivatives which hinder a direct derivation of 
the desired integral form. We thus suggest an 
approximate approach: The idea is to apply a finite 
difference scheme to the higher-order derivatives of 
the right-hand side of (1). The first-order derivatives 

can be approximated by 𝛿𝛿Δx𝑓𝑓𝑤𝑤 
Δ𝑥𝑥

 and  
𝛿𝛿ΔPx𝑓𝑓𝑤𝑤 
ΔPx

, where 

𝛿𝛿Δx𝑓𝑓𝑤𝑤(𝑷𝑷,𝒙𝒙) = 

= 𝑓𝑓𝑤𝑤 �⋅, 𝑥𝑥 +
Δ𝑥𝑥
2

,⋅� − 𝑓𝑓𝑤𝑤 �⋅,𝑥𝑥 −
Δ𝑥𝑥
2

,⋅, � , 

             𝛿𝛿ΔPx𝑓𝑓𝑤𝑤(𝑷𝑷,𝒙𝒙) =                               (3) 

= 𝑓𝑓𝑤𝑤 �𝑃𝑃𝑥𝑥 +
Δ𝑃𝑃𝑥𝑥

2
,⋅,⋅� − 𝑓𝑓𝑤𝑤 �𝑃𝑃𝑥𝑥 −

Δ𝑃𝑃𝑥𝑥
2

,⋅,⋅� . 

This substitution replaces partial derivatives with 
shifted (position and momentum) Wigner functions. 
Higher-order derivatives are replaced by using 
corresponding finite difference schemes and are 
indicated by 𝛿𝛿Δx𝑛𝑛   and 𝛿𝛿ΔPx

𝑛𝑛  for derivatives of order 𝑛𝑛. 
We use the characteristics of the Liouville operator, 
the Newtonian trajectories: 



 

 

 

      4 

 

IWW 2023 978-3-9504738-5-8 

𝑥𝑥(𝜕𝜕′) = 𝑥𝑥 − ∫ 𝒑𝒑(𝜏𝜏)
𝑚𝑚
𝑑𝑑𝑑𝑑,𝒑𝒑(𝜕𝜕′) = 𝑷𝑷− ∫ 𝑭𝑭�𝑥𝑥(𝑑𝑑),𝒑𝒑(𝑑𝑑)�𝑑𝑑𝑑𝑑𝑡𝑡

𝑡𝑡′
𝑡𝑡
𝑡𝑡′                     

                                                                                               (4) 

The trajectory is initialized by the point 𝑷𝑷, 𝒙𝒙, 𝜕𝜕, while 
𝜕𝜕′ <  𝜕𝜕 is the running time. The left-hand side of (1) 
becomes a full time derivative over the characteristics 
(4). Thus, we replace 𝒙𝒙 and 𝑷𝑷 in (1) by 𝒙𝒙(𝜕𝜕′),𝒑𝒑(𝜕𝜕′) from 

(4). In particular the partial derivative 𝜕𝜕𝑓𝑓𝑤𝑤
𝜕𝜕𝑥𝑥

≈
𝛿𝛿Δx𝑓𝑓𝑤𝑤
Δ𝑥𝑥

( 𝒑𝒑(𝜕𝜕′),𝒙𝒙(𝜕𝜕′)) is given by 

𝑓𝑓𝑤𝑤� 𝒑𝒑(𝜕𝜕′),𝑥𝑥+(𝜕𝜕′),𝑦𝑦(𝜕𝜕′)�
Δ𝑥𝑥

−
𝑓𝑓𝑤𝑤� 𝒑𝒑(𝜕𝜕′),𝑥𝑥−(𝜕𝜕′),𝑦𝑦(𝜕𝜕′)�

Δ𝑥𝑥
 

with 𝑥𝑥±(𝜕𝜕′) = 𝑥𝑥(𝜕𝜕′) ± Δ𝑥𝑥/2. Next, we consider the 
evolution of an initial condition 𝑓𝑓0 specified at time 𝜕𝜕′ =
 0, and integrate on 𝜕𝜕′ in the interval (0, 𝜕𝜕): 

𝑓𝑓𝑤𝑤(𝑷𝑷,𝒙𝒙, 𝜕𝜕) = 𝑒𝑒−∫ 𝛾𝛾(𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
0 𝑓𝑓0�𝒑𝒑(0),𝒙𝒙(0)� + 

� 𝑑𝑑𝜕𝜕′𝑒𝑒−∫ 𝛾𝛾(𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
𝑡𝑡′ �

𝐵𝐵1ℏ2𝑒𝑒
12𝑚𝑚 �

𝛿𝛿ΔPx
2 𝛿𝛿Δx𝑓𝑓𝑤𝑤
Δ𝑃𝑃𝑦𝑦2Δ𝑥𝑥

(𝒑𝒑(𝜕𝜕′), 𝑥𝑥(𝜕𝜕′), 𝜕𝜕′)  
𝑡𝑡

0
 

−
𝛿𝛿ΔPx𝛿𝛿ΔPy𝛿𝛿Δy𝑓𝑓𝑤𝑤
Δ𝑃𝑃𝑥𝑥Δ𝑃𝑃𝑦𝑦Δ𝑦𝑦

(𝒑𝒑(𝜕𝜕′),𝒙𝒙(𝜕𝜕′), 𝜕𝜕′)� 

+𝛾𝛾(𝜕𝜕′)𝑓𝑓𝑤𝑤(𝒑𝒑(𝜕𝜕′),𝒙𝒙(𝜕𝜕′), 𝜕𝜕′)]                                                  (5) 

At the end of the integration the right-hand side of (5) 
contains linear combinations of the solution 𝑓𝑓𝑤𝑤 so that 
we obtain a Fredholm integral equation of a second kind 
that has the form of (2): Formally, the right-hand side 
can be augmented by integrals on position and 
momentum and a set of 𝛿𝛿-functions used in the kernel 
to account for the offsets introduced by the finite 
difference scheme. The solution is given by the resolvent 
series, obtained by consecutive applications of the 

kernel on the free term 𝑒𝑒−∫ 𝛾𝛾(𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
0 𝑓𝑓0. In this way, the 

solution at 𝑷𝑷, 𝒙𝒙, 𝜕𝜕 is linked to the solutions in the phase 
space points (𝒑𝒑(𝜕𝜕′) ± 𝑴𝑴Δ𝑷𝑷,𝒙𝒙(𝜕𝜕′) ± 𝑵𝑵Δ𝒙𝒙) at 𝜕𝜕’ over the 
trajectory (4), where 𝑴𝑴 and 𝑵𝑵 are integers introduced 
by the finite difference scheme. These points initialize 
other trajectories, so that the evolution from time 𝜕𝜕′ to 
𝜕𝜕 becomes decomposed by Newtonian trajectories: 
They call for a picture of particles which evolve governed 
by the Lorentz force in (4). The properties of these 
particles bear similarities with, but also differences to, 
Boltzmann particles and Wigner signed particles.  

We use these models as a reference frame to 
discuss certain peculiarities of the EM particle 
model. The included auxiliary function 𝛾𝛾 [6], 
(which factors out after taking the time 
derivative of the equation), can be used to 
determine the particle flight time according to 
𝛾𝛾𝑒𝑒−∫𝛾𝛾𝑑𝑑𝜏𝜏 in analogy with the treatment of the 
Boltzmann and common Wigner equations: 𝛾𝛾 
refers to the total out-scattering rate in the 
former, whereas in the latter it refers to the 
interaction rate with the Wigner potential. The 
evolution is a result of consecutive flight and 
scattering events. Boltzmann particles are 
scattered locally in position yielding novel 
momentum values. All particles participate 
evenly in the evaluation of the physical 
averages, i.e., have a weight of 1. In the signed 
particle model the scattering is interpreted as 
generation of particles, which is local in position 
and introduces novel momentum values. The 
weight of the particles is, however, ±1. EM 
quantum particles also obey a generation 
scheme, as suggested by the many components 
of the kernel. Furthermore, these components 
bear a sign due to the difference scheme and so 
do the EM particles. However, now the 
symmetry of the Wigner potential is missing so 
that they have different absolute weights. 
Finally, the introduced spatial offsets 𝛥𝛥𝑥𝑥 show 
that the generation is nonlocal in position. The 
absolute weight difference and the spatial 
nonlocality is a manifestation of the quantum 
character of (5). 
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Full Counting Statistics of Ultrafast Quantum Transport 
Matthias Hübler, Wolfgang Belzig 

Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany 

matthias.huebler@uni-konstanz.de  

Quantum transport in the presence of time-dependent drives is dominated by quantum interference and 

many-body effects at low temperatures. For a periodic driving, the analysis of the full counting statistics 

revealed the elementary events that determine the statistical properties of the charge transport [1]. As a 

result, the noise correlations display quantum oscillation as functions of the ratio of the voltage amplitude 

and the drive frequency 𝑒𝑒𝑉𝑉0/ℏ𝜔𝜔 reflecting the detailed shape of the drive. However, so far only continuous 

wave excitations were considered, but recently transport by few-cycle light pulses were investigated [2] and 

the need for a statistical interpretation became eminent. 

We investigate the temporal dynamics of single- or few-cycle light pulses leaving traces in the charge transfer 

across nanosized gaps. The fingerprints of these time-dependent voltage pulses are imprinted in the full 

counting statistics of a coherent mesoscopic conductor at zero temperature. In addition, we identify the 

elementary processes that occur in the form of electron-hole pair creations, which can be investigated by the 

excess noise. We study the differential noise quantum oscillations induced by a wave packet consisting of an 

oscillating carrier modulated by a Gaussian- or a box-shaped envelope. As expected, the differential noise 

exhibits an oscillatory behavior with increasing amplitude. In particular, we find clear signature of the so-called 

carrier-envelope phase in the peak heights and positions of these quantum oscillations. More carrier cycles 

under the Gaussian envelope diminish the influence of the carrier-envelope phase, while this is not true for 

the box pulses, probably related to the abrupt onset.  

[1] M. Vanevic, Y. V. Nazarov, and W. Belzig, Elementary Events of Electron Transfer in a Voltage-Driven 

Quantum Point Contact, Phys. Rev. Lett. 99, 225 (2007). 

[2] T. Rybka, M. Ludwig, M. F. Schmalz, V. Knittel, D. Brida, and A. Leitenstorfer, Sub-Cycle Optical Phase 

Control of Nanotunnelling in the Single-Electron Regime, Nat. Photonics 10, 667 670 (2016). 
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Fig.1: Gauss pulse and its envelope for carrier-envelope phases φ =
0, φ = π/2.  The ratio between the varianceσ and the pulse 
repetition rate 1/τ = Ω/2π is chosen as τ/(√2σ) = 10. Here, we 
set σ ω = 1 (ω corresponds to the carrier frequency), which is a 
measure of the number of carrier cycles under the Gauss curve. 
Note the negative offset voltage for φ = 0 to keep the average 
voltage at zero. 

Fig.3: Illustration of the box pulse and its envelope for carrier-
envelope phases φ = 0,φ = π/2. The box counts 𝑁𝑁 = 1 carrier 
cycles with a period of 𝑑𝑑𝜔𝜔and extends between −𝑁𝑁𝑑𝑑𝜔𝜔/2 and 
𝑁𝑁𝑑𝑑𝜔𝜔/2, which is assumed to be smaller than the pulse repetition 
time 𝑑𝑑. 

 
 

Fig.2: Differential niose 𝑑𝑑 𝑆𝑆/𝑑𝑑(𝑒𝑒𝑉𝑉0) of a Gaussian pulse depicted 
over the ac amplitude 𝑉𝑉0 for carrier-envelope phases between 0 
and 𝜋𝜋/2. The variance  σ  in relation to the pulse repetition time 𝑑𝑑 
was set to τ/(√2σ) = 10 and in relation to the carrier angular 
frequency 𝜔𝜔 to σ ω = 1. 

Fig.4 Differential noise 𝑑𝑑 𝑆𝑆/𝑑𝑑(𝑒𝑒𝑉𝑉0) of a box pulse drawn over the 
ac amplitude 𝑉𝑉0 for carrier-envelope phases between 0 and 𝜋𝜋/2. 
The number of carrier cycles is 𝑁𝑁 = 1. The width of the box in 
comparison to pulse repetition rate was fixed to 𝑑𝑑/(𝑁𝑁𝑑𝑑𝜔𝜔)  = 2, 
because the electron-hole pair creation probabilities are nearly 
independent of the box size. Oscillations are caused by 
elementary processes subsequently activated as the voltage 
amplitude increases. 
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Mitigating Phase Diffusion Through a Realistic Optical Parametric Oscillator 
Stefano Olivares1,2 

1 Dipartimento di Fisica “Aldo Pontremoli”, 

Università degli Studi di Milano, I-20133 Milano, Italy 
2 Istituto Nazionale di Fisica Nucleare, 

Sezione di Milano, I- 20133 Milano Italy 

stefano.olivares@fisica.unimi.it 

Approaches based on Wigner functions allow to deal with quantum optics problems in a clearer way, since 

they can better clarify the dynamics of the involved quantum states also thanks to their representation in the 

quantum phase-space [1]. Here we address the use of optical parametric oscillator (OPO) to counteract phase 

diffusion (see Fig. 1) and demonstrate phase-noise reduction for coherent signals traveling through a suitably 

tuned OPO [2]. In particular, exploiting the Wigner function formalism, we theoretically and experimentally 

show that there is a threshold value on the phase noise, above which the OPO can be exploited to “squeeze” 

phase noise (see Fig. 2). The threshold depends on the energy of the input coherent state, and on the relevant 

parameters of the OPO, i.e., gain and input-output and crystal loss rates. Applications to phase estimation in 

the presence of a realistic OPO are also discussed [3, 4]. 

 

[1] S. Olivares, Eur. Phys. J. Special Topics 203, 3-24 (2012) 

[2] S. Cialdi et al., Phys. Rev. Lett. 124, 163601 (2020) 

[3] G. Carrara et al., Phys. Rev. A 102, 062610 (2020) 

[4] M. N. Notarnicola et al., J. Opt. Soc. Am. 39, 1059-1067 (2022) 
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Fig.1: (Top) Experimental scheme to investigate the squeezing of phase noise. (Bottom) Phase-space representation of the 
Wigner function of a coherent state before (blue) and after (orange) the phase diffusion process. Picture adapted from 
Ref. [2]. 

 

 

 

 

 

Fig.2: Phase-space representation of a coherent state after phase diffusion (orange) and after the OPO (green) for two 
OPO configuration (see Ref. [2] for details). Fluctuations of the y quadrature are reduced after the evolution through the 
OPO. Picture adapted from Ref. [2]. 
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Wigner Approach to Optimal Control in Quantum and Classical Wave Propagation 
Omar Morandi 

University of Florence 

Dipartimento di Matematica e Informatica U. Dini. 

omar.morandi@unifi.it 

I discuss some asymptotic regimes that help to clarify the connection of the Wigner-Weyl formalism with the 

Bohm description of the quantum mechanics and with the approximation of geometrical optics in classical 

highly oscillating waves. The Wigner formalism of the quasi-density distribution and the Bohm formulation of 

quantum mechanics provide alternative and equivalent approaches to modeling a quantum system. Both 

approaches describe the dynamics of a quantum particle in terms of density evolution in phase-space. Despite 

some formal analogies, a clear connection between the two formalisms has not been established. I will show 

that the Bohm description of the quantum motion can be viewed as a suitable localization limit of the Wigner 

pseudo-distribution function. As a second example of application of the Wigner-Weyl formalism, I will discuss 

the derivation of  the law of optical geometry in terms of Wigner approach. I will focus on the propagation of 

highly oscillating field moving in inhomogeneous, dispersive media. Similarly to the classical limit in quantum 

mechanics, Wigner transformed high oscillating waves localize in phase-space. In the spirit of the ray 

propagation approximation, the wave dynamics can be approximated by a Liouville dynamical problem. 

Finally, I will discuss a theoretical framework in which optimal control technique can be applied to Wigner 

distribution function in the phase-space. The dynamics of a quantum particle is designed to steer the 

probability density along a path in the phase-space or to minimize some cost functional. The controlled system 

consists of a gas of particles in the presence of an external field and the control is achieved by a dipolar field. 

I will discuss the existence a solution of the optimality problem. 
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Functional Calculus in Phase-Space with Applications to Quantum Fluid Dynamics  
Luigi Barletti 

Università degli Studi di Firenze 

luigi.barletti@unifi.it 

We present a systematic method to compute the formal semiclassical expansion of functional calculus in the 

framework of the phase-space formulation of quantum mechanics. The approach is based on the holomorphic 

representation of functional calculus [1]. Our method allows to perform the semiclassical expansion of a large 

class of local equilibrium Wigner function, i.e., to express it as a leading term, corresponding to the classical 

distribution (Maxwell-Boltzmann, Fermi-Dirac, Bose-Einstein, etc.), plus higher-order “quantum corrections”.  

This kind of expansion, in combination with the Quantum Maximum Entropy Principle (QMEP) [2,3], can be 

used to compute, starting from the Wigner equation, quantum corrections to the classical equations for fluids. 

This turns out to be particularly useful for systems with spin-like discrete degrees of freedom. In fact, the 

application of the QMEP to spinorial systems leads to peculiar difficulties (mainly related to unbounded 

negative energies and band singularities) that require a deep insight into the structure of the local equilibrium 

Wigner function [4,5]. 

 

[1] N. Dunford and J.T. Schwartz, Linear Operators, Part I: General Theory, Interscience, (1958)  

[2] P. Degond and C. Ringhofer, J. Stat. Phys. 112, 587-628 (2003) 

[3] P. Degond, F. Méhats and C. Ringhofer, J. Stat. Phys. 118, 625-667 (2005) 

[4] L. Barletti, P. Holzinger, A. Jüngel, Kinet. Relat. Models 15, 257-282 (2022) 

[5] L. Barletti, L. Demeio and S. Nicoletti (arXiv:2211.07391) 
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Electrothermal Signed Particle Monte Carlo Simulation of a  
Resonant Tunneling Diode 

Orazio Muscato 

Dipartimento di Matematica e Informatica, Università di Catania, Italy 

orazio.muscato@unict.it 

Device self-heating is becoming one of the main technological roadblocks of the predicted device 

miniaturization trends. In fact, power densities are expected to reach levels that will not permit normal 

operation of ICs, necessitating the development of accurate electrothermal simulators to investigate new 

designs minimizing self-heating effects. Simulation of carrier transport in nanoscale semiconductor structures 

requires an accurate coupling between electronic and lattice dynamics to account for self-heating effects. 

Heat generation in small devices is a direct consequence of the importance of nonequilibrium carrier transport 

in the active region of these structures. In areas where the electric field is high, the accelerated carriers collide 

with the lattice resulting in the emission of a large number of phonons which contribute to heat transport in 

the devices. Taking advantage of previous Electrothermal Monte Carlo semiclassical models [1], we shall study 

the heating effect in a GaAs Resonant Tunneling Diode (RTD), coupling the Signed Particle Monte Carlo solver 

of the Boltzmann Wigner Transport Equation [2], [3] with a steady-state solution of the heat diffusion 

equation. This methodology provides an accurate microscopic description of the spatial distribution of self-

heating and its effect on the detailed nonequilibrium carrier dynamics. Simulation results shell be presented 

during the conference. 

 

[1] Sadi, T.; Kensal, R.W.; Pilgrim, N.; Thobel, J.L.; Dessenne, F. Monte Carlo study of self-heating in 

nanoscale devices. J. Comput. Electr., 11, 118–128, (2012).  

[2] M. Nedjalkov, H. Kosina,  S. Selberherr, C. Ringhofer and D. K. Ferry, Phys. Rev. B, 70, 115319, (2004) 

[3] O. Muscato, J. Comput. Electr., 20, 2062-2069, (2021) 
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Interaction Time of Schrödinger Cat State with  
Amplitude-Varying Gaussian Potential  

D. Woźniak1, M. Kalka1, M. Wleklińska1, D. Kołaczek2, M. Wołoszyn1 , B. J. Spisak1  

1 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. 

Mickiewicza 30, 30-059 Kraków, Poland 
2 University of Agriculture in Kraków, Department of Applied Mathematics, 

ul. Balicka 253c, 30–198 Kraków, Poland 

bjs@agh.edu.pl 

The problem of tunneling time seems to be the reason for sleepless nights for many, with the main question 

being whether tunneling takes a finite time or simply happens instantaneously [1]. Simultaneously, the variety 

of tunneling time measures [2] seems unappealing, as they are based on different properties of the wave 

function. To unify this approach, and extend it, we suggest that the symplectic covariance of the Wigner 

distribution function [3] plays a significant role in determining the interaction time between quantum particles 

and potential. We tackle this problem by studying the interaction time of the Schrödinger cat state in a system 

consisting of a Gaussian potential barrier with a time-modulated amplitude with single and periodic changes. 

For this purpose, we applied the split operator method to solve the integro-differential equation of evolution 

of the Wigner distribution function and calculate the Shannon entropy and the nonclassicality parameter [4,5], 

two examples the of symplectically invariant measures to find the interaction times for the potential 

considered. Our results show that the dependence of the Shannon entropy on the trapped part of the 

Schrödinger cat Wigner distribution function stuck within the potential well is unnoticeable. 

In contrast, the corresponding nonclassicality parameter is significantly more sensitive. 

This results in the calculation of interaction time based on the nonclassicality parameter. 

 

[1] A. Kheifets, J. Phys. B, 53, 072001 (2020) 

[2] E. H. Hauge, J. A. Støvneng, Rev. Mod. Phys, 61, 917 (1989) 

[3] M. de Gosson, J. Pseudo-Differ. Oper. Appl., 2, 91 (2011)  

[4] A. Kenfack, K. Życzkowski, J. Opt., B Quantum Semiclass. Opt., 6, 396 (2004). 

[5] N. C. Dias, M. de Gosson, J. N. Prata, J. Fourier Anal. Appl., 25, 210 (2019) 
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Figure 2 The implicit dependence of Shannon entropy on the 
time evolution of Wigner distribution function taken for 
different setups of switching time. 

 

Figure 3 The implicit dependence of nonclassicality parameter on 
the time evolution of Wigner distribution function taken for 
different setups of switching time. 

 

 

 

Figure 1 The visualization of the idea behind the model and the symplectically 

invariant measures. Yellow-marked area depicts the significant interaction zone. 
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Scaling Laws of the Thermal Conductivity of Solids:  
The Role of Topological, Geometrical, and Compositional Disorder 

Michele Simoncelli 

Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge (UK)  

ms2855@cam.ac.uk 

 The temperature dependence of the thermal conductivity of crystals and glasses displays opposite asymptotic 

trends, decreasing as 1/T in the former and increasing (often up to a saturation value) in the latter. These 

trends originate from different microscopic conduction mechanisms: particle-like propagation of atomic 

vibrational waves in crystals [1], and wave-like tunneling between vibrational modes in glasses [2]. Recently, 

it has been shown that these two mechanisms naturally emerge from a unified Wigner formulation of thermal 

transport [3,4] (Fig. 1), raising fundamental questions on their coexistence and on related potential 

applications. Here we rely on such formulation to show that the relative strength of particle-like and wave-

like conduction mechanisms (Fig. 2) can be regulated by varying the degree of disorder in a solid. We rely on 

state-of-the-art quantum-accurate computational techniques [5-8] to parametrize and solve the Wigner heat-

transport equation; thus, we obtain quantitatively accurate predictions for the thermal conductivity of various 

families of polymorphs with variable topological (Fig. 3), geometrical, and compositional disorder. We discuss 

descriptors for the quantitative characterization of disorder in solids, and use them to analyze how disorder 

affects the magnitude and scaling law of the thermal conductivity. Finally, we show that very recent 

experiments confirm our prediction of the existence of materials featuring a conductivity with scaling 

intermediate between the 1/T decay of crystals and the increasing trend of glasses, i.e. almost temperature 

independent over a wide temperature range.  

[1] Peierls, R. Ann. Phys., 395, 1055 (1929). 

[2] Allen, P. B.; Feldman, J. L., Phys. Rev. Lett., 62, 645 (1989).  

[3] Simoncelli, M.; Marzari, N.; Mauri, F., Nat. Phys., 15, 809 (2019).  

[4] Simoncelli, M.; Marzari, N.; Mauri, F., Phys. Rev. X, 12, 041011 (2022).  

[5] Erhard, L. C.; Rohrer, J.; Albe, K.; Deringer, V. L., Npj Comput. Mater., 8, (2022). 

[6] Rowe, P. et al., J. Chem. Phys, 153, 034702 (2020).  

[7] Simoncelli, M.; Mauri, F.; Marzari, N. arXiv:2209.11201 (2022). 

[8] Harper, A.; Iwanowski, K.; Payne, M.; Simoncelli, M., in preparation (2023). 
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Fig. 1: Coexistence of particle-like and wave-like heat transport in La2Zr2O7. Green, 
conductivity determined by particle-like conduction mechanisms (κP), which displays the 
universal T−1 asymptotics (dashed). Blue, conductivity determined by wave-like conduction 
mechanisms (κC). Black, total conductivity: κTOT=κP+κC (the conductivity tensor is diagonal and 
isotropic). Scatter points represent the thermal conductivity measured in experiments (see 
Ref. [4] and references therein for details). 

 
Fig 2: Phonon mean free paths as a function of energy in La2Zr2O7 at 200 K (left), 800 K (centre) and 1300 K (right). The area of each circle is 
proportional to the contribution to the total conductivity and coloured according to the heat-conduction mechanism underlying the contribution: 
green for particle-like propagation; blue for wave-like tunneling; intermediate colours represent phonons contributing to both mechanisms, with 
red corresponding to 50% of each (see Ref. [4] for details). We highlight how phonons at the centre of the non-sharp crossover from dominant 
particle-like conduction to dominant wave-like conduction have a mean free path approximately equal to the average bond length (i.e., they are 
at the Ioffe-Regel limit in space, represented by the dashed line). The pie charts have an area proportional to the total conductivity, and the slices 
resolve the particle-like conductivity (green) and the wave-like conductivity (blue).  

 
Fig. 3, Thermal conductivity of amorphous alumina with various coordination topologies. The three-dimensional plot shows the thermal 
conductivity determined from first principles using the regularized Wigner computational protocol discussed in Ref. [7]. The two-dimensional 
plots show how the coordination topology of the disordered amorphous alumina network changes with density, and how this affects the total 
thermal conductivity. Taken from Ref. [8]. 
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Scattering In the Wigner Equation 
S. W. Belling and I. Knezevic 

Department of Electrical and Computer Engineering, University of Wisconsin – Madison 

Madison, WI 53706 

swbelling@wisc.edu 

ABSTRACT 
The Wigner equation describes the time 

evolution of the Wigner function, a quantum- 
mechanical analogue to the phase-space 
distribution function for a particle in classical 
statistical mechanics. We describe a procedure for 
calculating the collision integral in the Wigner 
equation, which would describe scattering in 
quantum-transport applications of the Wigner 
equation. We start from expressions for the 
dissipator term in the density matrix approach and 
project the terms onto a continuous momentum 
basis, where the Wigner-Weyl transform that moves 
us from the density matrix to the Wigner equation 
gets simplified. 

INTRODUCTION 
There are three popular quantum transport 

formalisms, each with their own benefits and 
drawbacks. The density matrix approach can 
capture full time-evolution in a computationally 
efficient manner, but relies on gauge-dependent 
formulations of electromagnetic fields which can be 
complicated to obtain. The non-equilibrium Green’s 
function (NEGF) approach deals well with scattering, 
but is generally limited to steady-state problems due 
to computational cost [1]. The Wigner function can 
capture full time-evolution like the density matrix, 
and is also expressed in terms of a familiar phase-
space (coordinate and momentum), which makes 
comparisons to classical physics intuitive [1]. 
However, the question remains open of how to treat 
scattering in a detailed microscopic way that is 
numerically tractable and intuitively appealing. 
Here, we present our steps toward tackling this 
treatment of scattering.  

APPROACH 

The Wigner function evolves in time according to 
the Wigner equation (1) which in 1D can be written 
as 
𝜕𝜕𝑓𝑓𝑊𝑊
𝜕𝜕𝑡𝑡

+ 𝑝𝑝
𝑚𝑚∗

𝜕𝜕𝑓𝑓𝑊𝑊
𝜕𝜕𝑥𝑥

= 𝑄𝑄𝑓𝑓𝑤𝑤(𝑥𝑥,𝑝𝑝) + 𝐶𝐶[𝑓𝑓𝑤𝑤(𝑥𝑥,𝑝𝑝)] (1) 

where 𝑓𝑓𝑊𝑊 is the Wigner function, 𝑉𝑉𝑊𝑊 is the so-called 
Wigner potential, 𝑥𝑥 is the coordinate and 𝑝𝑝 is 
momentum. The right hand side of this equation 
includes all scattering terms in the collision operator 
𝐶𝐶[𝑓𝑓𝑤𝑤(𝑥𝑥,𝑝𝑝)]. To obtain these scattering terms, we 
first look at the equation of motion for the density 
matrix, written in the Schrödinger picture as [2]: 
𝑑𝑑𝜌𝜌𝑒𝑒
𝑑𝑑𝑡𝑡

= − 𝑖𝑖
ℏ

[𝐻𝐻0,𝜌𝜌𝑒𝑒(𝜕𝜕)] −
1
ℏ2 ∫ 𝜕𝜕𝑟𝑟𝑝𝑝ℎ{[𝐻𝐻𝐼𝐼 , �𝑯𝑯𝑰𝑰(𝑑𝑑),𝜌𝜌𝑒𝑒(𝑑𝑑) ⊗𝜌𝜌𝑝𝑝ℎ(0)�]}𝑑𝑑𝑑𝑑∞

0 ,    (2) 
where the important quantity is 𝐻𝐻𝐼𝐼, the interaction 
Hamiltonian, which we can write for each scattering 
mechanism. The result of the time integral in (2) 
using a common bath spectral function is shown in 
Fig. 2. Typically, 𝐻𝐻𝐼𝐼 is cast in a basis of discrete 
energy eigenstates, where the rotating-wave 
approximation (RWA) is used to simplify the 
calculations. The RWA relies on the assumption of 
discrete energy states and large energy level 
spacings, which is not accurate for open or periodic 
systems, as in Fig. 1. Instead, we project 𝐻𝐻𝐼𝐼 onto the 
continuous momentum basis, making each term 
more suitable to be Wigner-Weyl transformed into 
the Wigner formalism. For example, one scattering 
mechanism might have an interaction Hamiltonian 
of the form 

�2𝜋𝜋
𝐿𝐿
�
2
∬𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑′𝑀𝑀(𝑑𝑑,𝑑𝑑′)𝐸𝐸(𝑞𝑞)𝐶𝐶𝑘𝑘′

+  𝐶𝐶𝑘𝑘 ⊗ 𝐵𝐵(𝑑𝑑),   (3) 
where 𝑀𝑀(𝑑𝑑,𝑑𝑑′) is the matrix element connecting 
states 𝑑𝑑,𝑑𝑑′ and 𝐶𝐶𝑘𝑘,𝐶𝐶𝑘𝑘′+  are electronic creation and 
destruction operators, and 𝐵𝐵 (for bath) is an 
operator for the other interacting particle (phonon, 
photon, etc.). Finally, we transform (3) to the Wigner 
equation with the Wigner-Weyl transform, aided by 
our projection to momentum which is already one 
of the Wigner function parameters.  
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Fig. 1.  Comparison of energy level spacings for a single quantum 
well (top) and several quantum wells (superlattice) (bottom). 
Even with just a few quantum wells stacked together, some of 
the energies begin to cluster together, decreasing the validity of 
the RWA. In a periodic structure or a true open system, the 
energy spectrum is continuous and the RWA unusable. 

 

Fig. 2.  Calculation of the time integral on the RHS of equation 
(2) for a simple representative elastic scattering mechanism in a 
periodic system.  
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It is generally difficult to treat long-range Coulombic scattering with perturbation theory, if for no other reason 

than the very common existence of multiple scattering. This is especially true with impurity scattering [1], and 

the coherence that exists through the scattering has been shown to be important in quantum transport [2]. 

In treating the polar-optical phonon interaction with non-equilibrium Green's functions, one has to worry 

about these correlations, which may lead to the need to include solving the Bethe-Salpeter equation and 

consideration of disconnected diagrams. A more useful approach is to use Wigner functions, as it has already 

been demonstrated that Monte Carlo techniques may be used here. The complication is the determination of 

the Wigner potential arising from the dipole interactions (fig. 1, 2) of the polar-optical phonon in real space 

that has been proposed [3]. Here, the determination of this Wigner potential and the constraints that Wigner 

transport faces when simulating the polar modes in real space will be discussed, using a planar semiconductor 

device configuration in which transport, and the Wigner function, are treated in the longitudinal (transport) 

direction of the channel, which is oriented along (110). In this configuration, the dipole fields are oriented at 

an angle to the plane of the channel (fig. 3), with this angle determined by crystalline properties. The 

projection of the dipole potential onto the channel plane maintains a dipolar potential, in which the amplitude 

is varied by the projection angle. The transformation of this potential into the Wigner potential is discussed, 

maintaining the three-dimensional nature of the original dipoles. The temporal modulation of the potential 

due to the phonon frequency sets a time scale which must be utilized in the simulations, if the scattering is to 

be observed. 

[1] H. S. Wong and Y. Taur, IEDM (1993) p.705. 

[2] J. Weinbub et al., Phys. Stat. Sol. RRL 12, 1800111 (2018).  

[3] D. K. Ferry, IWCN 2023 
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Fig. 2.  Motion of the atoms on one basis set may be the 
LO mode, simultaneously the other atoms in the 
tetragonal bonding are undergoing TO motion. 

Fig. 2.  A dipole potential. The dipole charge is aligned 
along the (111) crystal axis. (Wikipedia Commons 3.0) 

 

 

Fig. 3 Orientation of the channel plane and the direction 
of the actual dipoles (111). 
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Minimum Uncertainty States with Wigner: Quantum Hydro-Thermodynamics 
Nezihe Uzun 

             Center for Theoretical Physics, Polish Academy of Sciences, Warsaw, Poland 

nuzun@cft.edu.pl 

This talk is based on our previous work [1] whose main aim is to explore certain connections between classical 

and quantum systems in phase space. As the minimum uncertainty states are the closest one can get to a 

classical picture, squeezed coherent states are the main actors of this investigation. Those are time–

dependent, Gaussian states and their Wigner functions are also known to be Gaussian. This allows one to treat 

the Wigner function of squeezed coherent states as a well–defined quantum phase space distribution. We 

show that once one considers the hydrodynamic interpretation of quantum mechanics in tandem with the 

Wigner–Weyl–Moyal approach, a dynamic equilibrium thermodynamics of the system is derived quite easily 

similar to the one in classical kinetic theory. 

Within this talk, we show that (i) the Wigner function can be used to identify a marginal position distribution 

and a conditional momentum distribution together with their corresponding equilibrium entropies, (ii) 

temperature, pressure and internal energy can be derived for a dynamic quantum system; their connection 

to the quantum potential, the Maslov index and virial relation can be identified, (iii) different elements of the 

classical symplectic phase space evolution guide the evolution of different parts of the quantum 

thermodynamical potentials.  

We believe those results might find some area of use within the quantum information and quantum 

engineering applications. Specifically in quantum opto–mechanical problems where stability and efficiency 

issues are open problems for time dependent systems. 

[1] N. Uzun, Annals of Physics, Vol. 442, 168900 (2022). 
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Overcoming the Numerical Sign Problem in the Wigner Dynamics via  
Adaptive Particle Annihilation  

Yunfeng Xiong 

Beijing Normal University 

yfxiong@bnu.edu.cn 

The infamous numerical sign problem poses a fundamental obstacle to particle-based stochastic Wigner 

simulations in high dimensional phase space. Although the existing particle annihilation via uniform mesh 

significantly alleviates the sign problem when dimensionality D≤4, the mesh size grows dramatically when 

D⩾6 due to the curse of dimensionality and consequently makes the annihilation very inefficient. 

In this talk, I would like to report our recent progresses in overcoming the sign problem, based on a series of 

joint work with Professor Sihong Shao at Peking University, China. The first is a variance reduction technique 

based on the stationary phase approximation to kill the redundant stochastic particles. The second is an 

adaptive particle annihilation algorithm, termed Sequential-clustering Particle Annihilation via Discrepancy 

Estimation (SPADE). Specifically, SPADE follows a divide-and-conquer strategy: Adaptive clustering of particles 

via controlling their number-theoretic discrepancies and independent random matching in each cluster. The 

target is to alleviate the oversampling problem induced by the over-partitioning of phase space and capture 

the non-classicality of the Wigner function simultaneously. Combining them together, we attempt to simulate 

the proton-electron couplings in 6-D and 12-D phase space. A thorough performance benchmark of SPADE is 

provided with the reference solutions in 6-D phase space produced by a massively parallel grid-based 

deterministic Wigner solver.  

[1] Y. Xiong and S. Shao, Overcoming the numerical sign problem in Wigner dynamics via particle 

annihilation, http://arxiv.org/abs/2008.05161.  

[2] Y. Xiong and Y. Zhang and S. Shao, A characteristic-spectral-mixed scheme for six-dimensional Wigner-

Coulomb dynamics, https://arxiv.org/abs/2205.02380. 

 

 

 



 

 

 

      23 

 

IWW 2023 978-3-9504738-5-8 

 

 

 

 

 

 

 

 

 

 

 

Fig.1: Adaptive clustering of positive and negative 
particles 

Fig.2: Particles before and after adaptive annihilation  

  

Fig.3: Deterministic solutions of the Wigner function 
under the Coulomb potential.  

Fig.4 Stochastic particle solutions of the Wigner functions 
after SPADE. 
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Towards the Intuitive Understanding of Quantum World:  
Sonification of Wigner Function 

Reiko Yamada1, Eloy Pinol Jimenez1, and Maciej Lewenstein1,2 

1 ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology 

08860 Castelldefels (Barcelona), Spain 
2 ICREA, 08010 Barcelona, Spain 

reiko.yamada@icfo.eu  

epinol@icfo.net 

In recent years, there has been a resurgence of interest in quantum technologies by the general 
public. However, there has not been a convincing explanation of what exactly quantum mechanics is 

and how does the quantum world differ from the classical, formulated in a language that the public 
can comprehend. The problem of understanding quantum phenomena lies on the fact that they 

substantially differ from our perception of the everyday classical world alongside its intuitive 
interpretation. The visualization of the Wigner function, for example, has been widely used to 
develop the link between the two worlds, however the outcome at present is far from being ideal. 
Instead, our team, comprising a composer and quantum physicists, experimented with sonification 
in order to hone out intuition when coming across quantum phenomena. For this purpose, we focus 
on two characteristic examples, the n-photon (Fock) states and a “cat” state formed as a 
superposition of two coherent states resulting from a high-harmonic generation process. The latter 
is the highest photon number optical “cat” state experimentally reported [1], and varying the shift of 
the superposition it goes from a cat to an almost coherent state. Then, we sonify a transition from a 
quantum to an almost classical state. This paper illustrates a couple of methods we employed when 
experimenting with the Wigner-function sonification. The first one entails a mapping of its values to 
amplitudes, frequencies and phases of waveforms, superimposed to produce the final outcome. The 
second one maps the volume of different segments to the intensity of the desired sound outcome, 
while the extrema attained in each segment correspond to musical intervals in the score to be 

distributed to string quartet.  
 

[1] J. Rivera-Dean et al, Phys. Rev. A 105, 033714 (2022) 
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Fig.1: Fock state 1 and an example of mapping to sound. Each point of the grid is mapped to a waveform. Summing over them yields the 
final soundwave. 

 

Fig.2: Cat state with shift δα= -1 setting another example of mapping to sound. 

  

Fig.3: Score example of Wigner Function representation in String 
Quartet. 

Fig.4: Score example of Wigner Function representation in String 
Quartet. 
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Investigation of a Staggered Grid Formulation of the Wigner Transport Equation for 
Complex Band Structures 

Mathias Pech, Alan Abdi and Dirk Schulz 

Chair for High Frequency Techniques, TU Dortmund, Germany 

mathias.pech@tu-dortmund.de 

Describing the quantum charge carrier transport within the Wigner formalism offers many advantages 

including ease of transient simulations, low computational effort and the ability to include scattering. 

However, one problem common to all related approaches arises from the inherent transformation onto 

center-of-mass coordinates: Half of the density matrix is essentially lost when using a uniform grid [1]. 

Previous attempts at including the missing grid points resulted in a staggered grid formulation for the Wigner 

transport equation but suffered from their own drawbacks, such as the need for artificial scattering terms and 

the occurrence of negative charge carrier densities ([2]). With the presented approach, a similar formulation 

of two staggered grids occurs naturally when trying to model complex band structures, but the flexibility of a 

possible extension to non-parabolic bands is retained. An additional benefit is the similarity to the tight 

binding method, with the two approaches being equal in case of parabolic bands, which correspond to a next-

nearest neighbor approximation. Meanwhile, the conventional finite volume Wigner approach is inherently 

included when the potential is approximated by middle point rule, essentially decoupling the two grids. In 

order to approximate the energy dispersion in semiconductors, two common approaches are the power series 

expansion or the decomposition into its Fourier components. The former approach results in many derivative 

terms after the inverse-Weyl transformation that need to be approximated. The latter approach, however, 

results in exponential functions that directly lead to a discretization scheme similar to a central finite 

difference scheme and no derivatives need to be approximated. Two staggered grids result, which are coupled 

via the potential and pose novel challenges regarding their boundary conditions and reflections in the finite 

computational domain. The latter can be dealt with by using a complex absorbing potential (CAP) [3], that has 

to be modified for the formalism. The formulation of inflow boundary conditions proves to be difficult, since 

one of the grids always lies nested within the device and not at the contacts. The presented approach shows 

promising results and should therefore be further investigated for energy bands beyond the parabolic 

approximation and different boundary conditions. 

[1] W.R. Frensley, Rev. of Mod. Phys., 62, 745 (1990) 

[2] R.K. Mains, G.I. Haddad, J. Comput. Phys., 112, 149 (1994). 

[3] L. Schulz, D. Schulz, Trans. Nanotechnol. 18, 830 (2019) 
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Fig.1: The staggered grid in real space consists of the subgrids f and 
g as a result of the transformation onto the center-of-mass 
coordinates. For parabolic bands the potential couples the adjacent 
grids to each other. The dashed box indicates the computational 
cell for the centermost point in f2. When higher order 
approximations are used, the computational cell is extended to 
further grid points, similar to a higher order finite difference 
scheme. Special care has to be put into the inflow boundary 
conditions for f and g, as the first and last slices of g lie within the 
device and not at the boundary to the infinite reservoir. 

Fig.3: The self-consistent potential U and charge carrier density n as 
obtained by the presented algorithm (SG WTE) are shown for a 
resonant tunneling diode (RTD) when a drain voltage of 0.1 V is 
applied. The charge carrier density converges only when an 
appropriate CAP [3] is utilized. Similarly, the current densities are 
strongly influenced by the choice of the CAP and quickly diverge to 
unphysical results when unsuitable parameters for the CAP are 
chosen. As it can be seen the results are in excellent agreement with 
reference results obtained with the QTBM (dashed).  

  

Fig.2: Numerical dispersion for the presented approach using 
staggered grids (SG WTE) and for a standard finite volume 
discretization of the Wigner Transport equation (FV WTE). The solid 
line shows the dispersion for the case of parabolic bands as it is 
considered here. An extension to more complex bands is natural to 
the formalism and should be investigated further. 

Fig.4: The drain-end current density of the staggered grid approach is 
in excellent agreement to a reference solution obtained with the 
QTBM. For the staggered grid the arithmetic mean of the drain-end 
current densities of both grids is shown. Even though the individual 
current densities diverge from each other for higher drain voltages 
the mean current density is still smooth. In order for the self-
consistent Gummel algorithm to converge at higher applied voltages, 
the contacts of the RTD have been lengthened and the permittivity 
of the device has been artificially increased towards the contacts. 
This indicates that further investigation towards appropriate 
boundary conditions is needed.        
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Operational Phase-Space Distribution Functions Through  
Consecutive Weak and Strong Measurements 

Xavier Oriols and Carlos F. Destefani 

Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona  

08193, Bellaterra, Barcelona, Spain 

The Wigner distribution 𝒇𝒇𝑾𝑾(𝑥𝑥,𝑝𝑝, 𝜕𝜕) is a phase-space function that provides the correct (position and 

momentum) marginal distributions. In particular, it can be used to compute the weak values of the 

momentum in a (post-selected) position 𝑝𝑝𝑊𝑊(𝑥𝑥, 𝜕𝜕), also known as Bohmian velocities [1]. However, such 

Wigner distribution function can have negative values in some points or regions of the phase-space so that, 

strictly speaking, it cannot be understood as a probability, but as a quasi-probability [2]. Alternatively, in the 

laboratory, the weak value of the momentum 𝑝𝑝𝑊𝑊(𝑥𝑥, 𝜕𝜕) can be obtained from the expression 𝑝𝑝𝑊𝑊(𝑥𝑥, 𝜕𝜕) =
∫𝑑𝑑𝑝𝑝 𝑝𝑝 𝜬𝜬𝒑𝒑𝒙𝒙(𝑝𝑝, 𝑥𝑥, 𝜕𝜕) /∫𝑑𝑑𝑝𝑝 𝜬𝜬𝒑𝒑𝒙𝒙(𝑝𝑝, 𝑥𝑥, 𝜕𝜕), where the probability distribution 𝜬𝜬𝒑𝒑𝒙𝒙(𝑝𝑝, 𝑥𝑥, 𝜕𝜕) is constructed from the 

following operational protocol using an ensemble of identically prepared quantum states: (i) for each initial 

state of the ensemble, first, a weak measurement of the momentum is done, yielding the value 𝑝𝑝 at time t; 

(ii) subsequently, a strong measurement of the position is done, yielding the value 𝑥𝑥 at time t. Finally, 

𝜬𝜬𝒑𝒑𝒙𝒙(𝑝𝑝, 𝑥𝑥, 𝜕𝜕) is constructed by counting how many 𝑝𝑝 and 𝑥𝑥 occur when repeating (i) and (ii) on the mentioned 

ensemble [3]. By construction, 𝜬𝜬𝒑𝒑𝒙𝒙(𝑝𝑝, 𝑥𝑥, 𝜕𝜕) is always positive so that it is a true probability distribution in 

phase-space. In a similar way, one can construct 𝜬𝜬𝒙𝒙𝒑𝒑(𝑝𝑝, 𝑥𝑥, 𝜕𝜕) when first measuring the position weakly and 

after the momentum strongly. Again, by construction, 𝜬𝜬𝒙𝒙𝒑𝒑(𝑝𝑝, 𝑥𝑥, 𝜕𝜕) is also a true probability distribution in 

phase-space. In this workshop, we will study which are the similitudes and differences between the Wigner 

function 𝒇𝒇𝑾𝑾(𝑥𝑥,𝑝𝑝, 𝜕𝜕)  and the new operational phase-space functions 𝜬𝜬𝒑𝒑𝒙𝒙(𝑝𝑝, 𝑥𝑥, 𝜕𝜕) and 𝜬𝜬𝒙𝒙𝒑𝒑(𝑝𝑝, 𝑥𝑥, 𝜕𝜕) plotted in 

Figs 1, 2 and 3, respectively, for the superpositions of the gaussian states described in Fig. 1. Figure 4 shows 

that 𝜬𝜬𝒑𝒑𝒙𝒙(𝑝𝑝, 𝑥𝑥, 𝜕𝜕) provides the correct marginal distributions when integrated along the momentum, while the 

marginal distributions integrated in position are not correct because their still depend on the ancilla wave 

packet. In a similar way, Fig. 5 shows that 𝜬𝜬𝒙𝒙𝒑𝒑(𝑝𝑝, 𝑥𝑥, 𝜕𝜕) provide the correct marginal distributions when the 

integrated along the position, while the marginal distribution integrated along momentum is incorrect. In Fig. 

6, we see that the Bohmian velocity (in the mentioned above expression) can be equivalently computed from  

𝒇𝒇𝑾𝑾(𝑥𝑥,𝑝𝑝, 𝜕𝜕) or 𝜬𝜬𝒑𝒑𝒙𝒙(𝑝𝑝, 𝑥𝑥, 𝜕𝜕).  We argue that these two phase-space functions 𝜬𝜬𝒑𝒑𝒙𝒙(𝑝𝑝, 𝑥𝑥, 𝜕𝜕) and 𝜬𝜬𝒙𝒙𝒑𝒑(𝑝𝑝, 𝑥𝑥, 𝜕𝜕) 

contain the same information that can be extracted from 𝒇𝒇𝑾𝑾(𝑥𝑥,𝑝𝑝, 𝜕𝜕) with the advantages that they are 

positive-defined, have a simple and natural (no interferences in the phase-space central region) interpretation 

and are easily accessible in the laboratory through weak measurements. We conclude that such phase-space 

functions 𝜬𝜬𝒑𝒑𝒙𝒙(𝑝𝑝, 𝑥𝑥, 𝜕𝜕) and 𝜬𝜬𝒙𝒙𝒑𝒑(𝑝𝑝, 𝑥𝑥, 𝜕𝜕) clearly merit further investigation.   

[1] D.Pandey, R.Sampaio, T.Ala-Nissila, G. Albareda, and X. Oriols; Phys. Rev. A, 103, 052219 (2021). 

[2] E. Colomes, Z. Zhan, X. Oriols Journal of Computational Electronics, 14, 894(2015) 

[3] Carlos F. Destefani and Xavier Oriols, Phys. Rev. A 107, 012213 (2023). 
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Fig. 1: Wigner distribution function 𝒇𝒇𝑾𝑾(𝑥𝑥,𝑝𝑝, 𝜕𝜕) for a superposition 
of two wave packets. One with central position -10 𝑛𝑛𝑚𝑚 and 
momentum 2 𝑛𝑛𝑚𝑚−1 and another with central position 5 𝑛𝑛𝑚𝑚 and 
central momentum -1 𝑛𝑛𝑚𝑚−1. Both with spatial dispersion of 4 𝑛𝑛𝑚𝑚. 
Such superpositions provide negatives (quasi)probabilities. See 
interference in the phase-space central region.  

Fig. 2: Operational phase-space distribution function 𝜬𝜬𝒑𝒑𝒙𝒙(𝑝𝑝, 𝑥𝑥, 𝜕𝜕) 
obtained in a laboratory from a weak momentum measurement 
(with and ancilla wave packet with dispersion 𝜎𝜎𝑘𝑘 = 1.75 𝑛𝑛𝑚𝑚−1) and 
a consecutive strong position measurement for the quantum state 
described in Fig 1. No negative probabilities and no interferences in 
the phase-space central region. 

  

Fig. 3: Operational phase-space distribution function 𝜬𝜬𝒙𝒙𝒑𝒑(𝑝𝑝, 𝑥𝑥, 𝜕𝜕) 
obtained in a laboratory from a weak position measurement (with 
an ancilla wave packet with dispersion 𝜎𝜎𝑥𝑥 = 10 𝑛𝑛𝑚𝑚) and a 
consecutive strong momentum measurement for the state in Fig 1. 
No negative probabilities and no interferences in the phase-space 
central region. 

Fig. 4: Marginal probability distributions as a function of wave 
vector (a) and as a function of position (b) computed from the 
Wigner function from Fig. 1 (red) and the distribution 𝜬𝜬𝒑𝒑𝒙𝒙(𝑝𝑝, 𝑥𝑥, 𝜕𝜕) 
from Fig. 2 (blue). The position and momentum distribution directly 
computed from the wave function are also plotted (green).  

  

Fig. 5 Marginal probability distributions as a function of wave vector 
(a) and as a function of position (b) computed from the Wigner 
function from Fig. 1 (red) and the distribution 𝜬𝜬𝒙𝒙𝒑𝒑(𝑝𝑝,𝑥𝑥, 𝜕𝜕) from Fig. 
3 (blue). The position and momentum distribution directly 
computed from the wave function are also plotted (green). 

 Fig. 6: Bohmian velocity computed from the wave function (green), 
from the Wigner distribution (red) and from the distribution 
𝜬𝜬𝒑𝒑𝒙𝒙(𝑝𝑝, 𝑥𝑥, 𝜕𝜕) (blue). 
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Dynamics-Based Certification of Quantumness 
Lin Htoo Zaw1, Pooja Jayachandran1, Clive Cenxin Aw1 and Valerio Scarani1,2 
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Inspired by a 2006 work by Tsirelson that went completely unnoticed [1], we developed a new method to 

certify the non-classicality of some states [2-4]. The criterion assumes the knowledge of the dynamics that the 

system under study is undergoing. The talk will focus on our results for uniform precessions, although we have 

been able to extend the criterion to several other evolutions. For continuous variables, the main features of 

this certifications are: 

• It achieves a score that no classical model can match (like Bell’s inequalities). By contrast, most criteria 

for quantumness and entanglement rely on the uncertainty relations and are thus vulnerable to false 

positives in the case of imperfect measurements or calibration. 

• The protocol requires a single measurement of a single quadrature in each round. This in contrast 

with the Leggett-Garg criterion, that requires sequential measurements; and with criteria based on 

contextuality, which require defining sets of compatible observables. 

• It detects non-Gaussian states; and the optimal states form a family that can be used for bosonic error 

correction codes. 

Overall, the main surprise is: who would have said that one could detect quantumness by observing a boring 

uniform precession, as classical as it gets? 

[1] B. Tsirelson, https://arxiv.org/abs/quant-ph/0611147  

[2] L.T. Zaw et al., Phys. Rev. A 106, 032222 (2022), https://arxiv.org/abs/2204.10498  

[3] P. Jayachandran et al., https://arxiv.org/abs/2210.10357  

[4] L.T. Zaw, V. Scarani, https://arxiv.org/abs/2212.06017  
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Fig.1: Wigner function and wave-function of the harmonic oscillator state that 
is optimally detected by our protocol with three measurement times. From [2]. 

 

Fig.2: The criterion applied to the precession of angular momentum for discrete 
systems: optimal quantum score as a function of the Hilbert space dimension. In 
the inset, Wigner functions obtained by projecting the state on an overcomplete 
basis of states that encode a direction on a sphere. From [2]. 
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Phase Space Representation of Time-Frequency as Quantum Continuous Variables: 
Universal Quantum Computing, Metrology and the Quantum-Classical Frontier 
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Modes of the electromagnetic field appear both in classical and quantum optics. Nevertheless, when 
associated to quantum fields, as single photons, modes inherit of the photonic commutation relations 
and can thus be used in various applications, as testing fundamental aspects of quantum physics [1] or 
quantum computation and communications [2]. In such applications one often uses polarization as a 
discrete mode and map a qubit into orthogonal polarization states.  
In the present contribution we focus on continuous modes of single photons, and study in details the 
case of frequency and time variables. We show that, when associated to a subspace of n single photons, 
these variables also reproduce the commutation relations of position and momentum, or orthogonal 
quadratures of the electromagnetic field. Thus, it is possible to implement, with single photons, all the 
existing protocols for quantum computation and communication with continuous variables. 
Nevertheless, doing so requires some effort in defining a classical reference in phase space and leads 
to a different interpretation of the Wigner function’s properties than the one developed for the field’s 
quadratures.  
We construct all the necessary theoretical tools to define universal quantum gates using time and 
frequency as continuous variables and connect them to experimental devices that are currently used in 
quantum optics laboratories [3]. Then, we then study in details the role of the electromagnetic field’s 
frequency in time precision measurements using single photons as a paradigmatic system. For such, 
we independently identify the contributions of intensity and spectral resources and show that both can 
play a role on the scaling of the precision of parameter estimation with the number of probes. We show 
in particular that it is possible to observe a quadratic scaling using quantum mode correlations only 
and explicit the mathematical expression of states saturating the Heisenberg limit. We also provide a 
geometrical and phase space interpretation of our results, and observe a curious quantum-to-classical-
like transition on scaling by modifying the spectral variance of states. Our results connect discrete and 
continuous aspects of single photons and quantum optics by considering from a quantum mechanical 
perspective the role of frequency [4]. 
 
Finally, we propose a way to directly measured the Wigner function and the Quantum Fisher 
Information of a collective variable associated to a photon pair using modifications of the Hong-Ou-
Mandel experiment [5,6]. 
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[1] A. Aspect, P. Grangier, and G. Roger, Experimental realization of einstein-podolsky-rosen-bohm 

Gedankenexperiment : A new violation of bell’s inequalities, Phys. Rev. Lett. 49, 91 (1982). 
[2] A. Zeilinger, https://www.worldscientific.com/doi/10.1142/9789812773210_0006.  
[3] N. Fabre, A. Keller, and P. Milman, Time and frequency as quantum continuous variables, Phys. Rev. A 105, 
052429 (2022). 
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Tunneling Process of Symmetrical State – Phase-space Approach  
Based on the Time Evolution of the Wigner Distribution Function 
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The Wigner distribution function phase-space formulation of quantum mechanics has widespread 

applications, including quantum computing, quantum optics, quantum electronics or entanglement [1]. 

Furthermore, this approach is actively used in theoretical research on the tunnelling effect [2-3]. In Ref. [3], 

the Wigner function of defected Schrödinger cat states was introduced and its time evolution in the above-

barrier regime for a Gaussian potential barrier was analyzed. In this work the dynamics of a symmetrical 

quantum state constructed of a coherent superposition of well-separated Gaussian wave packets is analyzed 

with a focus on the effect of double-sided barrier penetration by Gaussians moving in opposite directions (see 

Fig. 1). Three families of quantum states are discussed in consequence of the changes in the relative phase of 

superposition: even and odd Schrödinger cat states, and Yurke-Stoler states (see Fig. 2). To describe the 

quantum dynamics, the phase-space entropic measure is introduced and its relation to the nonclassicality 

parameter [4] is presented. The lower bound of the entropic measure is established in such a way that it 

corresponds to the Heisenberg uncertainty principle. Moreover, using symplectic invariance of the proposed 

dynamical characteristics, it is shown that the time of the interaction with the potential barrier can be studied 

using Wigner function, and that the respective symplectic approach to the tunneling time is comparable to 

the mean flight time considered by Pollak et al. [5]. 
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[4] A. Kenfack and K. Zyczkowski, J. Opt. B Quantum Semiclassical Opt. 6, 396 (2004) 

[5] E. Pollak, Phys. Rev. Lett. 118, 70401 (2017) 



 

 

 

      35 

 

IWW 2023 978-3-9504738-5-8 

 

Fig.1: Conceptual design of the symmetrical quantum state approaching symmetrical potential barrier in the shape of Gaussian repulsive 
potential. 

 

Fig.2: Influence of the relative phase θ on the probability density in real space n(x,t), for the Gaussian potential barrier localized at  
0 a.u.; for the even Schrödinger Cat state: 𝜃𝜃 = 0, for the Yurke-Stoler state: 𝜃𝜃 = 𝜋𝜋/2, and for the odd Schrödinger Cat state: 𝜃𝜃 = 𝜋𝜋. 
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The Calogero-Sutherland model (CSM) is a one-dimensional quantum mechanical model describing a system 

of interacting particles with inverse-square pairwise interactions, commonly denoted as λ(λ-1)/x2 where λ is a 

dimensionless parameter. The ground-state wave function of a trapped system is known exactly and has 

Laughlin-type form, ψ= Πi<j exp(-xi
2)|xi - xj|λ, where xi are particle positions. The energy levels of the Calogero-

Sutherland model are known to be closely related to the eigenvalues of certain random matrices, such as the 

Gaussian Unitary Ensemble (GUE), Gaussian orthogonal ensemble (GOE), and Gaussian symplectic ensemble 

(GSE) described by different values of λ, which corresponds, apart from a factor 2, to the Dyson index in 

Random Matrix Theory. The density profile for large number of particles corresponds to the shape of the 

Wigner semicircle distribution, n(x)=2/(πR2)·(R2-x2)1/2, where R is the Thomas-Fermi size. We study the pair 

distribution function, which provides the probability of finding to particles separated by a certain distance in 

the quantum mechanical model and can be mapped to the level spacing distribution of Random Matrices, 

with the mapping known as Wigner surmise. We use Monte Carlo algorithm to find the properties numerically. 

As well, we calculate the one-body density matrix both for bosonic and fermionic statistics of the particles. 

Natural orbital analysis provides information on the occupation of the eigenstates of the OBDM and is related 

to the phenomenon of Bose-Einstein condensation in the bosonic case. We provide approximate expressions 

for the correlation functions. 
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